miércoles, 7 de septiembre de 2011

Historia de las Computadoras

Uno de los primeros dispositivos mecánicos para contar fue el ábaco, cuya historia se remonta a las antiguas civilizaciones griega y romana. Este dispositivo es muy sencillo, consta de cuentas ensartadas en varillas que a su vez están montadas en un marco rectangular.


















La Pascalina inventada por Blaise Pascal (1623 - 1662) de Francia y la de Gottfried Wilhelm von Leibniz (1646 - 1716) de Alemania. Con estas máquinas, los datos se representaban mediante las posiciones de los engranajes, y los datos se introducían manualmente estableciendo dichas posiciones finales de las ruedas, de manera similar a como leemos los números en el cuentakilómetros de un automóvil.


Primera Generación

En esta generación había una gran desconocimiento de las capacidades de las computadoras, puesto que se realizó un estudio en esta época que determinó que con veinte computadoras se saturaría el mercado de los Estados Unidos en el campo de procesamiento de datos.

















Esta generación abarco la década de los cincuenta. Y se conoce como la primera generación. Estas máquinas tenían las siguientes características:

Estas máquinas estaban construidas por medio de tubos de vacío.
Eran programadas en lenguaje de máquina.
En esta generación las máquinas son grandes y costosas (de un costo aproximado de ciento de miles de dólares).


Segunda Generación

Cerca de la década de 1960, las computadoras seguían evolucionando, se reducía su tamaño y crecía su capacidad de procesamiento. También en esta época se empezó a definir la forma de comunicarse con las computadoras, que recibía el nombre de programación de sistemas.








Las características de la segunda generación son las siguientes:

Están construidas con circuitos de transistores.
Se programan en nuevos lenguajes llamados lenguajes de alto nivel.
En esta generación las computadoras se reducen de tamaño y son de menor costo. Aparecen muchas compañías y las computadoras eran bastante avanzadas para su época como la serie 5000 de Burroughs y la ATLAS de la Universidad de Manchester.

Tercera generación

Con los progresos de la electrónica y los avances de comunicación con las computadoras en la década de los 1960, surge la tercera generación de las computadoras. Se inaugura con la IBM 360 en abril de 1964.3












Las características de esta generación fueron las siguientes:

Su fabricación electrónica esta basada en circuitos integrados.
Su manejo es por medio de los lenguajes de control de los sistemas operativos.
La IBM produce la serie 360 con los modelos 20, 22, 30, 40, 50, 65, 67, 75, 85, 90, 195 que utilizaban técnicas especiales del procesador, unidades de cinta de nueve canales, paquetes de discos magnéticos y otras características que ahora son estándares (no todos los modelos usaban estas técnicas, sino que estaba dividido por aplicaciones).

El sistema operativo de la serie 360, se llamó OS que contaba con varias configuraciones, incluía un conjunto de técnicas de manejo de memoria y del procesador que pronto se convirtieron en estándares.



Cuarta generación


Aquí aparecen los microprocesadores que es un gran adelanto de la microelectrónica, son circuitos integrados de alta densidad y con una velocidad impresionante. Las microcomputadoras con base en estos circuitos son extremadamente pequeñas y baratas, por lo que su uso se extiende al mercado industrial. Aquí nacen las computadoras personales que han adquirido proporciones enormes y que han influido en la sociedad en general sobre la llamada "revolución informática".






En 1976 Steve Wozniak y Steve Jobs inventan la primera microcomputadora de uso masivo y más tarde forman la compañía conocida como la Apple que fue la segunda compañía más grande del mundo, antecedida tan solo por IBM; y esta por su parte es aún de las cinco compañías más grandes del mundo.

En 1981 se vendieron 800 00 computadoras personales, al siguiente subió a 1 400 000. Entre 1984 y 1987 se vendieron alrededor de 60 millones de computadoras personales, por lo que no queda duda que su impacto y penetración han sido enormes.




Quinta Generación


En vista de la acelerada marcha de la microelectrónica, la sociedad industrial se ha dado a la tarea de poner también a esa altura el desarrollo del software y los sistemas con que se manejan las computadoras. Surge la competencia internacional por el dominio del mercado de la computación, en la que se perfilan dos líderes que, sin embargo, no han podido alcanzar el nivel que se desea: la capacidad de comunicarse con la computadora en un lenguaje más cotidiano y no a través de códigos o lenguajes de control especializados.






Japón lanzó en 1983 el llamado "programa de la quinta generación de computadoras", con los objetivos explícitos de producir máquinas con innovaciones reales en los criterios mencionados. Y en los Estados Unidos ya está en actividad un programa en desarrollo que persigue objetivos semejantes, que pueden resumirse de la siguiente manera:

Procesamiento en paralelo mediante arquitecturas y diseños especiales y circuitos de gran velocidad.
Manejo de lenguaje natural y sistemas de inteligencia artificial.
El futuro previsible de la computación es muy interesante, y se puede esperar que esta ciencia siga siendo objeto de atención prioritaria de gobiernos y de la sociedad en conjunto.




EQUIPO 1






Tarjeta Madre










Una tarjeta madre es la central o primaria tarjeta de circuito de un sistema de computo u otro sistema electrónico complejo. Una computadora típica con el microprocesador, memoria principal, y otros componentes básicos de la tarjeta madre. Otros componentes de la computadora tal como almacenamiento externo, circuitos de control para video y sonido, y dispositivos periféricos son unidos a la tarjeta madre vía conectores o cables de alguna clase.







La tarjeta madre es el componente principal de un computador personal. Es el componente que integra a todos los demás. Escoger la correcta puede ser difícil ya que existen miles. Estos son los elementos que se deben considerar




Zócalo



El zócalo (socket en inglés) es un sistema electromecánico de soporte y conexión eléctrica, instalado en la placa base, que se usa para fijar y conectar un microprocesador. Se utiliza en equipos de arquitectura abierta, donde se busca que haya variedad de componentes permitiendo el cambio de la tarjeta o el integrado. En los equipos de arquitectura propietaria, los integrados se sueldan sobre la placa base, como sucede en las videoconsolas.





Existen variantes desde 40 conexiones para integrados pequeños, hasta más de 1300 para microprocesadores, los mecanismos de retención del integrado y de conexión dependen de cada tipo de zócalo, aunque en la actualidad predomina el uso de zócalo ZIF (pines) o LGA (contactos).


Microprocesador





El microprocesador o simplemente procesador, es el circuito integrado central y más complejo de una computadora u ordenador; a modo de ilustración, se le suele asociar por analogía como el "cerebro" de una computadora.

El procesador es un circuito integrado constituido por millones de componentes electrónicos integrados. Constituye la unidad central de procesamiento (CPU) de un PC catalogado como microcomputador.









Esta unidad central de procesamiento está constituida, esencialmente, por registros, una unidad de control y una unidad aritmético lógica (ALU), aunque actualmente todo microprocesador también incluye una unidad de cálculo en coma flotante, (también conocida como "co-procesador matemático"), que permite operaciones por hardware con números decimales, elevando por ende notablemente la eficiencia que proporciona sólo la ALU con el cálculo indirecto a través de los clásicos números enteros. Aparece en computadoras de cuarta generación.





El microprocesador está conectado, generalmente, mediante un zócalo específico a la placa base. Normalmente para su correcto y estable funcionamiento, se le adosa un sistema de refrigeración, que consta de un disipador de calor fabricado en algún material de alta conductividad térmica, como cobre o aluminio, y de uno o más ventiladores que fuerzan la expulsión del calor absorbido por el disipador; entre éste último y la cápsula del microprocesador suele colocarse pasta térmica para mejorar la conductividad térmica. Existen otros métodos más eficaces, como la refrigeración líquida o el uso de células portier para refrigeración extrema, aunque estas técnicas se utilizan casi exclusivamente para aplicaciones especiales, tales como en las prácticas de overclocking.
La "velocidad" del microprocesador suele medirse por la cantidad de operaciones por ciclo de reloj que puede realizar y en los ciclos por segundo que este último desarrolla, o también en MIPS. 


Tipos de Procesadores



Pentium-75 ; 5x86-100 (Cyrix y AMD)

AMD 5x86-133
Pentium-90
AMD K5 P100
Pentium-100
Cyrix 686-100 (PR-120)
Pentium-120
Cyrix 686-120 (PR-133) ; AMD K5 P133
Pentium-133
Cyrix 686-133 (PR-150) ; AMD K5 P150
Pentium-150
Pentium-166







Cyrix 686-166 (PR-200)
Pentium-200
Cyrix 686MX (PR-200)
Pentium-166 MMX
Pentium-200 MMX
Cyrix 686MX (PR-233)
AMD K6-233
Pentium II-233
Cyrix 686MX (PR-266); AMD K6-266
Pentium II-266
Pentium II-300
Pentium II-333 (Deschutes)
Pentium II-350




Disipador



Un disipador es un elemento físico, sin partes móviles, destinado a eliminar el exceso de calor de cualquier elemento.



Su funcionamiento se basa en la segunda ley de la termodinámica, transfiriendo el calor de la parte caliente que se desea disipar al aire. Este proceso se propicia aumentando la superficie de contacto con el aire permitiendo una eliminación más rápida del calor excedente.




Equipo 2
 
Ranura ISA




ISA



La ranura ISA es un ranura de expansión de 16 bits capaz de ofrecer hasta 16 MB/s a 8 megahercios. Los componentes diseñados para la ranura ISA eran muy grandes y fueron de las primeras ranuras en usarse en las computadoras personales.



 Hoy en día es una tecnología en desuso y ya no se fabrican placas madre con ranuras ISA. Estas ranuras se incluyeron hasta los primeros modelos del microprocesador Pentium III. Fue reemplazada en el año 2000 por la ranura PCI.


EISA





EISA (Arquitectura Extendida Estdndar de la Industria.), tipo de slot para tarjetas de ampliación basado en el estándar ISA pero de 32 bits y capacidad de 32 MB/s de transferencia; actualmente en desuso debido a la implantación del PCI pero en la industria se sigue usando en maquinas que requieren uso rudo y control por computadora.




Esta tecnología tampoco fue muy difundida debido a su escasa velocidad de bus, pero gracias a esa escasa velocidad pudo mantener la compatibilidad con sus antecesoras de 8 bits y 16 bits.

Ancho: 32
Velocidad: 8.33 MHz
Ancho de banda; 33,3 Mb/s


PCI



Peripheral Component Interconnect o PCI es un bus de ordenador estándar para conectar dispositivos periféricos directamente a su placa base. Estos dispositivos pueden ser circuitos integrados ajustados en ésta (los llamados "dispositivos planares" en la especificación PCI) o tarjetas de expansión que se ajustan en conectores. Es común en las computadoras personales, donde ha desplazado al ISA como bus estándar, pero también se emplea en otro tipo de ordenadores.





A diferencia de los buses ISA, el bus PCI permite la configuración dinámica de un dispositivo periférico. En el tiempo de arranque del sistema, las tarjetas PCI y el BIOS interactúan y negocian los recursos solicitados por la tarjeta PCI. Esto permite asignación de IRQs y direcciones del puerto por medio de un proceso dinámico diferente del bus ISA, donde las IRQs tienen que ser configuradas manualmente usando jumpers externos. Las últimas revisiones de ISA y el bus MCA de IBM ya incorporaban tecnologías que automatizaban todo el proceso de configuración de las tarjetas, pero el bus PCI demostró una mayor eficacia en tecnología plug and play. Aparte de esto, el bus PCI proporciona una descripción detallada de todos los dispositivos PCI conectados a través del espacio de configuración PCI.




AGP




Las ranuras AGP se utilizan especialmente para tarjetas gráficas AGP. Comienzan a ser reemplazadas por las ranuras PCI Express. Tipos de AGP:


• AGP 1x: canal de 32 bits, operando a 66 MHz resultando en una velocidad máxima de transferencia de 266 megabytes por segundo. El doble que los 133 MB/s de los PCI.

• AGP 2x : canal de 32 bits, operando a 66 MHz con "double pumped", resultando entonces en 133 MHz con una transferencia máxima de 533 MB/s.

• AGP 4x: canal de 32 bits, operando a 66 MHz con "quad pumped", logrando así 266 MHz con una velocidad de transferencia máxima de 1066 MB/s.





• AGP 8x : canal de 32 bits, operando a 66 Mhz multiplicado 8 veces, llegando entonces a 533 MHz, resultando en una velocidad máxima de transferencia de 2133 MB/s.

También han sido producidas otras variantes de AGP que no son estándares y que han sido desarrolladas por otros fabricantes como ser 64 bit AGP, AGP Express, AGI, AGX, Ultra-AGP, XGP, AGR, etc.




PCI Expres


PCI Express (anteriormente conocido por las siglas 3GIO, en el caso de las "Entradas/Salidas de Tercera Generación", en inglés: 3rd Generation In/Out) es un nuevo desarrollo del bus PCI que usa los conceptos de programación y los estándares de comunicación existentes, pero se basa en un sistema de comunicación serie mucho más rápido. Este sistema es apoyado principalmente por Intel, que empezó a desarrollar el estándar con nombre de proyecto Arapahoe después de retirarse del sistema Infiniband.

PCI Express es abreviado como PCI-E o PCIe, aunque erróneamente se le suele abreviar como PCI-X o PCIx. Sin embargo, PCI Express no tiene nada que ver con PCI-X que es una evolución de PCI, en la que se consigue aumentar el ancho de banda mediante el incremento de la frecuencia, llegando a ser 32 veces más rápido que el PCI 2.1. Su velocidad es mayor que PCI-Express, pero presenta el inconveniente de que al instalar más de un dispositivo la frecuencia base se reduce y pierde velocidad de transmisión.







Equipo 3




BIOS


El BIOS (sigla en inglés de basic input/output system; en español "sistema básico de entrada y salida") es un software que localiza y reconoce todos los dispositivos necesarios para cargar el sistema operativo en la memoria RAM; es un software muy básico instalado en la placa base que permite que ésta cumpla su cometido. Proporciona la comunicación de bajo nivel, el funcionamiento y configuración del hardware del sistema que, como mínimo, maneja el teclado y proporciona una salida básica (emitiendo pitidos normalizados por el altavoz de la computadora si se producen fallos) durante el arranque. El BIOS usualmente está escrito en lenguaje ensamblador. El primer uso del término "BIOS" se dio en el sistema operativo CP/M, y describe la parte de CP/M que se ejecutaba durante el arranque y que iba unida directamente al hardware (las máquinas de CP/M usualmente tenían un simple cargador arrancable en la memoria de sólo lectura, y nada más). La mayoría de las versiones de MS-DOS tienen un archivo llamado "IBMBIO.COM" o "IO.SYS" que es análogo al BIOS de CP/M.






El BIOS es un sistema básico de entrada/salida que normalmente pasa inadvertido para el usuario final de computadoras. Se encarga de encontrar el sistema operativo y cargarlo en la memoria RAM. Posee un componente de hardware y otro de software; este último brinda una interfaz generalmente de texto que permite configurar varias opciones del hardware instalado en el PC, como por ejemplo el reloj, o desde qué dispositivos de almacenamiento iniciará el sistema operativo (Microsoft Windows, GNU/Linux, Mac OS X, etc.).




El BIOS gestiona al menos el teclado de la computadora, proporcionando incluso una salida bastante básica en forma de sonidos por el altavoz incorporado en la placa base cuando hay algún error, como por ejemplo un dispositivo que falla o debería ser conectado. Estos mensajes de error son utilizados por los técnicos para encontrar soluciones al momento de armar o reparar un equipo.







El BIOS antiguamente residia en memorias ROM o EPROM pero desde mediados de los 90 comenzó a utilizarse memorias flash que podían ser actualizadas por el usuario. Es un programa tipo firmware. El BIOS es una parte esencial del hardware que es totalmente configurable y es donde se controlan los procesos del flujo de información en el bus del ordenador, entre el sistema operativo y los demás periféricos. También incluye la configuración de aspectos importantes de la máquina.


Chip norte



Circuito integrado auxiliar o chipset es el conjunto de circuitos integrados diseñados con base a la arquitectura de un procesador (en algunos casos diseñados como parte integral de esa arquitectura), permitiendo que ese tipo de procesadores funcionen en una placa base. Sirven de puente de comunicación con el resto de componentes de la placa, como son la memoria, las tarjetas de expansión, los puertos USB, ratón, teclado, etc.

Las placas base modernas suelen incluir dos integrados, denominados Norte y Sur, y suelen ser los circuitos integrados más grandes después del microprocesador.
El chipset determina muchas de las características de una placa base y por lo general la referencia de la misma está relacionada con la del chipset.






A diferencia del micro controlador, el procesador no tiene mayor funcionalidad sin el soporte de un chipset: la importancia del mismo ha sido relegada a un segundo plano por las estrategias de marketing.


Chip SUR


El puente sur (en inglés southbridge) es un circuito integrado que se encarga de coordinar los diferentes dispositivos de entrada y salida y algunas otras funcionalidades de baja velocidad dentro de la placa base. El puente sur no está conectado a la unidad central de procesamiento, sino que se comunica con ella indirectamente a través del puente norte.
La funcionalidad encontrada en los puentes sur actuales incluye soporte para:
  • Peripheral Component Interconnect
  • Bus ISA
  • Bus SPI
  • System Management Bus
  • Controlador para el acceso directo a memoria
  • Controlador de Interrupcciones
  • Controlador para Integrated Drive Electronics (SATA o PATA)
  • Puente LPC
  • Reloj en Tiempo Real - Real Time Clock
  • Administración de potencia eléctrica APM y ACPI
  • BIOS
  • Interfaz de sonido AC97 o HD Audio.





Puente sur VIA.
Adicionalmente el southbridge puede incluir soporte para Ethernet, RAID, USB y Codec de Audio. El southbridge algunas veces incluye soporte para el teclado, el ratón y los puertos seriales, sin embargo, aún en el 2007 las computadoras personales gestionaban esos recursos por medio de otro dispositivo conocido como Super I/O.
En los últimos modelos de placas el Southbridge integra cada vez mayor número de dispositivos a conectar y comunicar por lo que fabricantes como AMD o VIA Technologies han desarrollado tecnologías como HyperTransport o Ultra V-Link respectivamente para evitar el efecto cuello de botella que se producía al usar





Chip de Vídeo 





Una tarjeta gráfica, tarjeta de vídeo, placa de vídeo, tarjeta aceleradora de gráficos o adaptador de pantalla, es una tarjeta de expansión para una computadora u ordenador, encargada de procesar los datos provenientes de la CPU y transformarlos en información comprensible y representable en un dispositivo de salida, como un monitor o televisor. Las tarjetas gráficas más comunes son las disponibles para las computadoras compatibles con la IBM PC, debido a la enorme popularidad de éstas, pero otras arquitecturas también hacen uso de este tipo de dispositivos.

Es habitual que se utilice el mismo término tanto a las habituales tarjetas dedicadas y separadas como a las GPU integradas en la placa base. 




Algunas tarjetas gráficas han ofrecido funcionalidades añadidas como captura de vídeo, sintonización de TV, decodificación MPEG-21 y MPEG-4 o incluso conectores Firewire, de ratón, lápiz óptico o joystick.
Las tarjetas gráficas no son dominio exclusivo de los PC; contaron o cuentan con ellas dispositivos como los Commodore Amiga (conectadas mediante las ranuras Zorro II y Zorro III), Apple II, Apple Macintosh, Spectravideo SVI-328, equipos MSX y, por supuesto, en las videoconsolas modernas, como la Wii, la Playstation 3 y la Xbox360.


Pila

La pila es una pequeña batería de 3v (a veces 5v) la cual va en la placa madre del PC, la función de la pila tipo botón es entregarle energía continua a la placa madre para que almacene la información de los BIOS y ser guardada en la memoria RAM CMOS, cuando la pila se saca la BIOS se resetean, existen varias pilas virtuales en cuestiones de memoria las utiliza el sistema operativo.

-La Pila o Stack de la computadora es propiamente la memoria de la que dispone. Es una estructura de datos de LIFO (Last In, First Out).




-Para fines prácticos se podría ver propiamente como un arreglo donde se va introduciendo los datos y de ahí alimenta a los programas que corres en tu maquina.-Por ejemplo, si has trabajado con Windows 98 era muy común el FATAL ERROR de VOLCADO DE PILA. Y no es que la pila de tu PC se estuviese terminando, si no que la memoria había llegado a su límite físico y no podía almacenar mas.



Equipo 4


IDE




El cable IDE es un tipo de cable, generalmente gris, que se utiliza para conectar un conector IDE de la placa madre hacia un dispositivo de almacenamiento (especialmente discos duros y unidades de discos ópticos).


Generalmente cada cable IDE permite conectar dos dispositivos, el problema es que sólo un dispositivo puede estar transfiriendo información a la vez.



SATA


El estándar Serial ATA (S-ATA o SATA) es un bus estándar que permite conectar periféricos de alta velocidad a equipos.

El estándar Serial ATA se introdujo en febrero de 2003 con el fin de compensar las limitaciones del estándar ATA (más conocido con el nombre de "IDE" y antes llamado Paralela ATA), que utiliza un modo de transmisión paralelo. De hecho, este modo de transmisión no está diseñado para trabajar con altas frecuencias debido a problemas relacionados con alteraciones electromagnéticas entre los diferentes hilos.



ATX


El estándar ATX (Advanced Technology Extended) se desarrolló como una evolución del factor de forma[1] de Baby-AT, para mejorar la funcionalidad de los actuales E/S y reducir el costo total del sistema. Este fue creado por Intel en 1995. Fue el primer cambio importante en muchos años en el que las especificaciones técnicas fueron publicadas por Intel en 1995 y actualizadas varias veces desde esa época, la versión más reciente es la 2.2 [2] publicada en 2004.
Una placa ATX tiene un tamaño de 305 mm x 244 mm (12" x 9.6"). Esto permite que en algunas cajas ATX quepan también placas Boza microATX.
Otra de las características de las placas ATX son el tipo de conector a la fuente de alimentación, el cual es de 24 (20+4) contactos que permiten una única forma de conexión y evitan errores como con las fuentes AT y otro conector adicional llamado P4, de 4 contactos. También poseen un sistema de desconexión por software.






Formatos ATX.



  • ATX-30,5×24,4cm.

  • Mini-ATX-28.4cm x 20.8cm.


  • Micro-ATX-24.4cm x 24.4cm.


  • Flex-ATX-22.9cm x 19.1cm.


  • A-ATX-Format-30.5cm x 69cm.







Integración de los puertos E/S en la propia placa base.
La rotación de 90º de los formatos anteriores.
El procesador está en paralelo con los slots de memoria.
Los slots AGP, PCI, PCI-e, están situados horizontalmente con el procesador.
Tiene mejor refrigeración.

AT



El factor de forma AT (Advanced Technology) es el formato de placa base empleado por el IBM AT y sus clones en formato sobremesa completo y torre completo. Su tamaño es de 12 pulgadas (305 mm) de ancho x 11-13 pulgadas de profundo. Fue lanzado al mercado en 1984. Este formato fue el primer intento exitoso de estandarización para las formas de placas base; antes de él, cada fabricante producía sus PC de formas diferentes haciendo casi imposible realizar intercambios de partes, actualizaciones de hardware y otras operaciones que hoy son comunes.





Si bien este estándar representó un gran avance sobre las plataformas propietarias que producía cada fabricante, con el tiempo fueron descubiertas varias falencias que hicieron necesario que se reemplazara. Su gran tamaño dificultaba la introducción de nuevas unidades de disco. Además su conector con la fuente de alimentación inducía fácilmente al error siendo numerosos los casos de gente que quemaba la placa al conectar indebidamente los dos juegos de cables (pese a contar con un código de color para situar 4 cables negros en la zona central). 




El conector de teclado es el mismo DIN 5 del IBM PC original.

En 1985 IBM introdujo Baby-AT, más pequeño y barato que AT. Pronto todos los fabricantes cambiaron a esta variante. Sin embargo las mismas especificaciones de este estándar hacían muy difícil seguir con el proceso de miniaturización, por lo que en 1995, Intel presento el estándar ATX, el cual era compatible con el nuevo procesador Pentium.
En 1997 ATX dejó atrás a AT, pasando a ser el nuevo estándar más popular.



Equipo 5



RAM



La memoria principal o RAM (Random Access Memory, Memoria de Acceso Aleatorio) es donde el computador guarda los datos que está utilizando en el momento presente. El almacenamiento es considerado temporal por que los datos y programas permanecen en ella mientras que la computadora este encendida o no sea reiniciada.




Se le llama RAM por que es posible acceder a cualquier ubicación de ella aleatoria y rápidamente

Físicamente, están constituidas por un conjunto de chips o módulos de chips normalmente conectados a la tarjeta madre. Los chips de memoria son rectángulos negros que suelen ir soldados en grupos a unas plaquitas con "pines" o contactos




SIMM


Single In-line Memory Module, con 30 ó 72 contactos. Los de 30 contactos pueden manejar 8 bits cada vez, por lo que en un 386 ó 486, que tiene un bus de datos de 32 bits, necesitamos usarlos de 4 en 4 módulos iguales. Miden unos 8,5 cm (30 c.) ó 10,5 cm (72 c.) y sus zócalos suelen ser de color blanco.




Los SIMMs de 72 contactos, más modernos, manejan 32 bits, por lo que se usan de 1 en 1 en los 486; en los Pentium se haría de 2 en 2 módulos (iguales), porque el bus de datos de los Pentium es el doble de grande (64 bits).:


DIMM



más alargados (unos 13 cm), con 168 contactos y en zócalos generalmente negros; llevan dos muescas para facilitar su correcta colocación. Pueden manejar 64 bits de una vez, por lo que pueden usarse de 1 en 1 en los Pentium, K6 y superiores. 




Existen para voltaje estándar (5 voltios) o reducido (3.3 V).
Y podríamos añadir los módulos SIP, que eran parecidos a los SIMM pero con frágiles patitas soldadas y que no se usan desde hace bastantes años, o cuando toda o parte de la memoria viene soldada en la placa (caso de algunos ordenadores de marca).



RIMM


RIMM, acrónimo de Rambus Inline Memory Module(Módulo de Memoria en Línea Rambus), designa a los módulos de memoria RAM que utilizan una tecnología denominada RDRAM, desarrollada por Rambus Inc. a mediados de los años 1990 con el fin de introducir un módulo de memoria con niveles de rendimiento muy superiores a los módulos de memoria SDRAM de 100 MHz y 133 MHz disponibles en aquellos años.




Los módulos RIMM RDRAM cuentan con 184 pines y debido a sus altas frecuencias de trabajo requieren de difusores de calor consistentes en una placa metálica que recubre los chips del módulo. Se basan en un bus de datos de 16 bits y están disponibles en velocidades de 300MHz (PC-600), 356 Mhz (PC-700), 400 MHz (PC-800) y 533 Mhz (PC-1066) que por su pobre bus de 16 bits tenía un rendimiento 4 veces menor que la DDR. La RIMM de 533MHz tiene un rendimiento similar al de un módulo DDR133, a pesar de que sus latencias son 10 veces peores que la DDR.
los módulos RIMM fueron introducidos para su uso en servidores basados en Intel Pentium 4.



la tecnología RDRAM niveles de rendimiento muy superiores a la tecnología SDRAM y las primeras generaciones de DDR RAM, debido al alto costo de esta tecnología no han tenido gran aceptación en el mercado de PC. 


SODIMM

Las memorias SO-DIMM (Small Outline DIMM) consisten en una versión compacta de los módulos DIMM convencionales. Debido a su tamaño tan compacto, estos módulos de memoria suelen emplearse en computadores portátiles, PDAs y notebooks, aunque han comenzado a sustituir a los SIMM/DIMM en impresoras de gama alta y tamaño reducido y en equipos con placa base miniatura Mini-ITX).




Los módulos SO-DIMM tienen 100, 144 ó 200 pines. Los de 100 pines soportan transferencias de datos de 32 bits, mientras que los de 144 y 200 lo hacen a 64 bits. Estas últimas se comparan con los DIMM de 168 pines (que también realizan transferencias de 64 bits). A simple vista se diferencian porque las de 100 tienen 2 hendiduras guía, las de 144 una sola hendidura casi en el centro y las de 200 una hendidura parecida a la de 144 pero más desplazada hacia un extremo.


Los SO-DIMM tienen más o menos las mismas características en voltaje y potencia que las DIMM corrientes, utilizando además los mismos avances en la tecnología de memorias (por ejemplo existen 


DIMM y SO-DIMM con memoria PC2-5300 (DDR2.533/667) con capacidades de hasta 2 GB y Latencia CAS (de 2.0, 2.5 y 3.0).
Asimismo se han desarrollado ordenadores en una sola placa SO-DIMM como el Toradex Colibri (basado en CPU Intel XScale y Windows CE 5.0). 



SDRAM


Synchronous Dynamic Random Access Memory (SDRAM) es una memoria dinámica de acceso aleatorio DRAM que tiene una interfaz síncrona. Tradicionalmente, la memoria dinámica de acceso aleatorio DRAM tiene una interfaz asíncrona, lo que significa que 

el cambio de estado de la memoria tarda un cierto tiempo, dado por las características de la memoria, desde que cambian sus entradas. En cambio, en las SDRAM el cambio de estado tiene lugar en el momento señalado por una señal de reloj y, por lo tanto, está sincronizada con el bus de sistema del ordenador. El reloj también permite controlar una máquina de estados finitos interna que controla la función de "pipeline" de las instrucciones de entrada. Esto permite que el chip tenga un patrón de operación más complejo que la DRAM asíncrona, que no tiene una interfaz de sincronización.



Las SDRAM son ampliamente utilizadas en los ordenadores, desde la original SDRAM y las posteriores DDR (o DDR1), DDR2 y DDR3. Actualmente se está diseñando la DDR4 y se prevé que estará disponible en 2012. 

DDR



DRAM es fundamentalmente limitada por la matriz de DRAM, DRAM tiene el potencial de ancho de banda muy alto, porque cada lectura interior es en realidad una fila de miles de bits. Para hacer más de este ancho de banda disponible para los usuarios, una interfaz de doble velocidad de datos se ha desarrollado. Este sistema utiliza los mismos comandos, excepto una vez por ciclo, pero lee o escribe dos palabras de datos por ciclo de reloj. Algunos cambios menores en el momento de interfaz de DEG se hicieron en retrospectiva, y la tensión de alimentación se redujo en 3,3 a 2,5 V. Como resultado, DDR SDRAM no es compatible con SDR SDRAM.


DDR SDRAM (a veces llamado DDR1 para mayor claridad) se duplica la mínima unidad de lectura o escritura, y cada acceso se refiere a al menos dos términos consecutivos.
Típico DDR SDRAM de velocidades de reloj son 133, 166 y 200 MHz (7,5, 6, y 5 ns / ciclo), generalmente descrito como DDR-266, DDR-333 y DDR-400 (3.75, 3, y 2,5 ns por golpe). Correspondiente de 184-pines DIMM son conocidos como PC-2100, PC-2700 y PC-3200. Un rendimiento de hasta DDR-550 (PC-4400) está disponible por un precio. 




DDR2


DDR2 es un tipo de memoria RAM. Forma parte de la familia SDRAM de tecnologías de memoria de acceso aleatorio, que es una de las muchas implementaciones de la DRAM.


Los módulos DDR2 son capaces de trabajar con 4 bits por ciclo, es decir 2 de ida y 2 de vuelta en un mismo ciclo mejorando sustancialmente el ancho de banda potencial bajo la misma frecuencia de una DDR SDRAM tradicional (si una DDR a 200 MHz reales entregaba 400 MHz nominales, la DDR2 por esos mismos 200 MHz reales entrega 800 MHz nominales). Este sistema funciona debido a que dentro de las memorias hay un pequeño buffer.




Las memorias DDR2 tienen mayores latencias que las conseguidas con las DDR convencionales, cosa que perjudicaba su rendimiento. Reducir la latencia en las DDR2 no es fácil. El mismo hecho de que el buffer de la memoria DDR2 pueda almacenar 4 bits para luego enviarlos es el causante de la mayor latencia, debido a que se necesita mayor tiempo de "escucha" por parte del buffer y mayor tiempo de trabajo por parte de los módulos de memoria, para recopilar esos 4 bits antes de poder enviar la información.



DDR3 


 DDR3 es un tipo de memoria RAM. Forma parte de la familia SDRAM de tecnologías de memoria de acceso aleatorio, que es una de las muchas implementaciones de la SDRAM.
El principal beneficio de instalar DDR3 es la habilidad de hacer transferencias de datos más rápido, lo que permite obtener velocidades de transferencia y velocidades de bus más altas que las versiones DDR2 anteriores. Sin embargo, no hay una reducción en la latencia, la cual es proporcionalmente más alta. Además la DDR3 permite usar integrados de 512 MB a 8 GB, siendo posible fabricar módulos de hasta 16 GiB. También proporciona significativas mejoras en el rendimiento en niveles de bajo voltaje, lo que lleva consigo una disminución del gasto global de consumo.
Se prevé que la tecnología DDR3 puede ser dos veces más rápida que la DDR2 y el alto ancho de banda que promete ofrecer DDR3 es la mejor opción para la combinación de un sistema con procesadores dual-core, quad-core y hexaCore (2, 4 y 6 núcleos por microprocesador). Las tensiones más bajas del DDR3 (1,5 V frente 1,8 V de DDR2) ofrecen una solución térmica y energética más eficaces



EQUIPO 6

Tipos de gabinetes


El gabinete es una caja metálica y de plástico, horizontal o vertical (en este último caso, también es llamado torre o tower), en el que se encuentran todos los componentes de la computadora (placas, disco duro, procesador, etc ).

Dentro del gabinete son colocados:

Fuente
Mainboard (Placa madre)
Procesador
Placa de Vídeo
Placa de Sonido
Placa de Red
Drives internos (Drive de CD, Drive de DVD, Lectores de Memoria)
Memoria
Disco duro (HD)




Mini torre

Es una estructura metálica (chasis) rectangular, diseñada para ser colocada de manera vertical; se encuentra protegida por cubiertas de plástico, fibra de vidrio ó lámina, y tiene la función de permitir el montaje de los diversos dispositivos para que funcione el equipo de cómputo (la tarjeta principal ("motherboard"), los discos duros, las unidades ópticas, las disqueteras, lectoras de memorias digitales, la fuente de poder, ventiladores internos, etc.). Se le llama minitorre porque tiene la forma de un pequeño edificio. Integran la mayoría una fuente de alimentación para distribuir la electricidad entre los diversos dispositivos internos.



Actualmente estos gabinetes son los mas comerciales y casi han sustituido del mercado a los gabinetes horizontales



Mediatorre









La diferencia de ésta es que aumenta su tamaño para poder colocar más dispositivos. Normalmente son de 4 bahías de 5 ¼ y 4 de 3 ½ y un gran número de huecos para poder colocar tarjetas y demás aunque esto depende siempre de la placa base.




Torre




Es el más grande. Puedes colocar una gran cantidad de dispositivos y es usado cuando se precisa una gran cantidad de dispositivos.






Gabinetes  tuneados

















Servidor


Suelen ser gabinetes más anchos que los otros y de una estética inexistente debido a que van destinadas a lugares en los que no hay mucho tránsito de clientes como es un centro de procesamiento de datos. Su diseño está basado en la eficiencia donde los periféricos no es la mayor prioridad sino el rendimiento y la ventilación. Suelen tener más de una fuente de alimentación de extracción en caliente para que no se caiga el servidor en el caso de que se estropee una de las dos y normalmente están conectados a un SAI que protege a los equipos de los picos de tensión y consigue que en caso de caída de la red eléctrica el servidor siga funcionando por un tiempo limitado.


Moddig




El modding, del inglés "modify" (modificar), es el arte o técnica de modificar estética o funcionalmente partes de las computadoras, ya sea la torre, mouse, teclado o monitor, y los componentes de los videojuegos, como pueden ser las consolas. Puede referirse tanto a las modificaciones al hardware como al software de las mismas, aunque este último también puede llamarse "chipping". A todo el que practica o hace el modding se le llama "modder". Sin embargo, la palabra modding se suele usar frecuentemente para las modificaciones realizadas a un ordenador o a algo relacionado con él, como son los periféricos, accesorios e incluso muebles que lo rodean.




El modding es personalizar los dispositivos y componentes añadiéndoles, modificando o en muy raras ocasiones, sacándole partes, modificando la estructura de la caja ó creando la tuya propia, añadiendo componentes, modificando la forma de estos para obtener mayor espectacularidad y diseño, en definitiva es el arte de darle forma y color al PC poniendo en ello toda la imaginación que se pueda tener



Fuente de poder


En electrónica, una fuente de alimentación es un dispositivo que convierte la tensión alterna de la red de suministro, en una o varias tensiones, prácticamente continuas, que alimentan los distintos circuitos del aparato electrónico al que se conecta (ordenador, televisor, impresora, router, etc.)



EQUiPO 7

Puerto Paralelo
Prolongación de los bus de datos  que es capaz de transportar 8 bits de información a lo ancho, un bit a lado del otro. Se conectan en impresoras, scanner. Posee 25 contactos.


Puerto USB
Puerto serial de alta velocidad. Este bus puede conectar y desconectar periféricos con el equipo encendido. Puede conectar 127 dispositivos.



Puerto Fireware
Interfaz para dispositivos de video y audio digital, asi como para discos duros externos. Llega a velocidades de 400 Mbits/ seg.


Puerto VGA
Es un conector estándar de la tarjeta gráfica de 15 pines, se utiliza para conectar el monitor.


Puerto PS/2
Se conectan al teclado y al ratón. Son conectores de tipo MINIDIN de 6 patillas.


Conector de audio:
Son de colores. Transmiten la señal de audio por 2 canales que van separados, son de color rojo o blanco.


Conector RCA
Transmiten la señal de video compuesto. Suele ser de color amarillo. La señal es análoga.


Puerto ETHERNET
Campo de 32 bits (4 bytes). La longitud máxima es la distancia que puede haber entre 2 nodos.
Determina la forma física de la red.


Puerto modem
Funcionan en Internet y fax. Se utilizan con líneas análogas, modula-de modula la señal digital. Su velocidad máxima es de 56 kbps.


Puerto HDMI
(High Definition  Multimedia Interface) Puerto de 19 o 29 terminales, transmite videos de alta definición y canales de audio. Envía señales desde la computadora, hasta la pantalla. Tiene 15 patillas.


Puerto  MINI USB
Tiene una forma trapezoidal o rectangular. Es de 5 u 8 pines. Se encuentra en cámaras fotográficas, cámaras de video, o MP3.


Conector Coaxial
Consiste en una funda hueca. Se utiliza en redes de comunicación de banda ancha.     


No hay comentarios:

Publicar un comentario